信息化时代离开不了传感器,应用领域非常广泛
- 2021-07-28 15:48:041107
来源:仪表网
【物流设备网 行业动态】传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
传感器的主要特性指标有哪些?
一、传感器静态
传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方程,或以输入量作横坐标,把与其对应的输出量作纵坐标而画出的特性曲线来描述。表征传感器静态特性的主要参数有:线性度、灵敏度、迟滞、重复性、漂移等。
(1)线性度:指传感器输出量与输入量之间的实际关系曲线偏离拟合直线的程度。定义为在全量程范围内实际特性曲线与拟合直线之间的最大偏差值与满量程输出值之比。
(2)灵敏度:灵敏度是传感器静态特性的一个重要指标。其定义为输出量的增量与引起该增量的相应输入量增量之比。用S表示灵敏度。
(3)迟滞:传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入输出特性曲线不重合的现象成为迟滞。对于同一大小的输入信号,传感器的正反行程输出信号大小不相等,这个差值称为迟滞差值。
(4)重复性:重复性是指传感器在输入量按同一方向作全量程连续多次变化时,所得特性曲线不一致的程度。
(5)漂移:传感器的漂移是指在输入量不变的情况下,传感器输出量随着时间变化,此现象称为漂移。产生漂移的原因有两个方面:一是传感器自身结构参数;二是周围环境(如温度、湿度等)。
(6)分辨力:当传感器的输入从非零值缓慢增加时,在超过某一增量后输出发生可观测的变化,这个输入增量称传感器的分辨力,即最小输入增量。
(7)阈值:当传感器的输入从零值开始缓慢增加时,在达到某一值后输出发生可观测的变化,这个输入值称传感器的阈值电压。
二、传感器动态
所谓动态特性,是指传感器在输入变化时,它的输出的特性。在实际工作中,传感器的动态特性常用它对某些标准输入信号的响应来表示。这是因为传感器对标准输入信号的响应容易用实验方法求得,并且它对标准输入信号的响应与它对任意输入信号的响应之间存在一定的关系,往往知道了前者就能推定后者。常用的标准输入信号有阶跃信号和正弦信号两种,所以传感器的动态特性也常用阶跃响应和频率响应来表示。
三、线性度
通常情况下,传感器的实际静态特性输出是条曲线而非直线。在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。
拟合直线的选取有多种方法。如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。
四、灵敏度
灵敏度是指传感器在稳态工作情况,下输出量变化△y对输入量变化△x的比值。它是输出一输入特性曲线的斜率。如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。否则,它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm。当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。提高灵敏度,可得到较高的测量精度。但灵敏度愈高,测量范围愈窄,稳定性也往往愈差。
五、分辨率
分辨率是指传感器可感受到的被测量的最小变化的能力。也就是说,如果输入量从某一非零值缓慢地变化。当输入变化值未超过某一数值时,传感器的输出不会发生变化,即传感器对此输入量的变化是分辨不出来的。只有当输入量的变化超过分辨率时,其输出才会发生变化。
通常传感器在满量程范围内各点的分辨率并不相同,因此常用满量程中能使输出量产生阶跃变化的输入量中的最大变化值作为衡量分辨率的指标。上述指标若用满量程的百分比表示,则称为分辨率。分辨率与传感器的稳定性有负相相关性。
信息化的21世纪,离开不了传感器,传感器的应用领域非常的广泛,电子计算机、生产自动化、现代信息、军事、交通、化学、环保、能源、海洋开发、遥感、宇航等等。下面对一些常用的传感器做简单的介绍。
1.传感器与环境保护
目前,地球的大气污染、水质污浊及噪声已严重地破坏了地球的生态平衡和我们赖以生存的环境,这一现状已引起了世界各国的重视。为保护环境,利用传感器制成的各种环境监测仪器正在发挥着积极的作用。
中国现在的环境受到了极大的污染,主要是工业的发展造成了严重的污染。长江、黄河等水域都有不同程度的污染;空气现在的空气也不新鲜,特别是在有工业的地方,比如说PM2.5等超标;这些都是通过传感器检测出来的。
2.传感器在机器人上的应用
目前,在劳动强度大或危险作业的场所,已逐步使用机器人取代人的工作。一些高速度、高精度的工作,由机器人来承担也是非常合适的。但这些机器人多数是用来进行加工、组装、检验等工作,屑于生产用的自动机械式的单能机器人。在这些机器人身上仅采用了检测臂的位置和角度的传感器。
要使机器人和人的功能更为接近,以便从事更高级的工作,要求机器人能有判断能力,这就要给机器人安装物体检口传感器,特别是视觉传感器和触觉传感器,使机器人通过视觉对物体进行识别和检测,通过触觉对物体产生压觉、力觉、滑动感觉和重量感觉。这类机器人被称为智能机器人,它不仅可以从事特殊的作业,而且一般的生产、事务和家务,全部可由智能机器人去处理,这是现在发展机器人的主要研究对象之一。
3.传感器与家用电器
现代家用电器中普遍应用着传感器。传感器在电子炉灶、自动电饭锅、吸尘器、空调器、电子热水器、热风取暖器、风干器、报警器、电樊斗、电风扇、游戏机、电子驱蚊器、洗衣机、洗碗机、照像机、电冰箱、彩色及平板电视机、录像机、录音机、收音机、影碟机及家庭影院等方面得到了广泛的应用。
随着人们生活水平的不断提高,对提高家用电器产品的功能及自动化程度的要求极为强烈。为满足这些要求,首先要使用能检测模拟量的高精度传感器,以获取正确的控制信息,再由微型计算机进行控制,使用家用电器更加方便、安全、可靠,并减少能源消耗,为更多的家庭创造一个舒适的生活环境。
目前,家庭自动化的蓝图正在设计之中,未来的家庭将由中央控制装置的微型计算机,通过各种传感器代替人监视家庭的各种状态,并通过控制设备进行着各种控制。家庭自动化的主要内容包括:安全监视与报警、空调及照明控制、耗能控制、太阳光自动跟踪、家务劳动自动化及人身健康管理等。家庭自动化的实现,可使人们有更多的时间用于学习、教育或休息娱乐。
4.传感器与物联网
物联网是一个基于互联网、传统电信网等信息承载体,让所有能够被独立寻址的普通物理对象实现互联互通的网络。它具有普通对象设备化、自治终端互联化和普适服务智能化3个重要特征。
物联网(Internet of Things)指的是将无处不在(Ubiquitous)的末端设备(Devices)和设施(Facilities),包括具备“内在智能”的传感器、移动终端、工业系统、楼控系统、家庭智能设施、视频监控系统等和“外在使能”(Enabled)的,如贴上RFID的各种资产(Assets)、携带无线终端的个人与车辆等“智能化物件或动物”或“智能尘埃”(Mote),通过各种无线/有线的长距离/短距离通讯网络实现互联互通(M2M)、应用大集成(Grand Integration)、以及基于云计算的SaaS营运等模式,提供安全可控乃至个性化的实时在线监测、定位追溯、报警联动、调度指挥、预案管理、远程控制、安全防范、远程维保、在线升级、统计报表、决策支持、领导桌面(集中展示的Cockpit Dashboard)等管理和服务功能,实现对“万物”的“高效、节能、安全、环保”的“管、控、营”一体化。简单的讲,物联网是物与物、人与物之间的信息传递与控制,在物联网应用中有三项关键技术其中就包括传感器技术。
5.传感器在医疗及人体医学上的应用
随着医用电子学的发展,仅凭医生的经验和感觉进行诊断的时代将会结束。现在,应用医用传感器可以对人体的表面和内部温度、血压及腔内压力、血液及呼吸流量、肿瘤、血液的分析、脉波及心音、心脑电波等进行高难度的诊断。显然,传感器对促进医疗技术的高度发展起着非常重要的作用。
为增进全国人民的健废水平,我国医疗制度的改革,将把医疗服务对象扩大到全民。以往的医疗工作仅局限于以治疗疾病为中心,今后,医疗工作将在疾病的早期诊断、早期治疗、远距离诊断及人工器官的研制等广泛的范围内发挥作用,而传感器在这些方面将会得到越来越多的应用。
6.传感器与遥感技术
卫星遥感(satellite remote sensing)是航天遥感的组成部分,以人造地球卫星作为遥感平台,主要利用卫星对地球和低层大气进行光学和电子观测。即从远离地面的不同工作平台上(如高塔、气球、飞机、火箭、人造地球卫星、宇宙飞船、航天飞机等)通过传感器,对地球表面的电磁波(辐射)信息进行探测,并经信息的传输、处理和判读分析,对地球的资源与环境进行探测和监测的综合性技术。
在飞机及航天飞行器上装用的传感器是近紫外线、可见光、远红外线及微波等传感器。在船舶上向水下观测时多采用超声波传感器。例如,要探测一些矿产资源埋藏在什么地区,就可以利用人造卫星上的红外接受传感器从地面发出的红外线的量进行测量,然后由人造卫星通过微波再发送到地面站,经地面站计算机处理,便可根据红外线分布的差异判断出埋有矿藏的地区。
资料来源:OFweek工控网
原标题:信息化时代离开不了传感器,应用领域非常广泛